
10.1. Снаряд, выпущенный со скоростью 0 из пушки, стоящей на горизонтальной 

поверхности, упал на расстоянии L от нее (при этом 
0 Lg  ). Определите 

возможное время t полета снаряда и угол  с горизонтальной поверхностью, под 

которым был выпущен снаряд. Ускорение свободного падения g, сопротивлением 

воздуха пренебречь. 

 

Решение. 
Вариант 1 

Воспользуемся формулой расстояния от точки выстрела до точки падения:  
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Этому синусу соответствуют как  минимальный угол  
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так и максимальный 
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Далее находим время t как  
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или, используя (1), 
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Подставляя значения (3) и (4) в уравнение (6), и проводя тригонометрические 

преобразования, получаем два значения времени полета: 
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Разбалловка 

 

№ Критерий Баллы 

1 Записано уравнение (1) для расстояния от точки выстрела до точки 

падения 
1 

2 Записано уравнение (2) для sin 2. 1 

3 Получены решения (3) и (4) для минимального и максимального 

угла 

2 

4 Записано уравнение (5) или (6) для зависимости времени полета от 

угла с горизонталью. 

2 



5 Получено выражение (6) для tmin (можно без тригонометрического 

преобразования к окончательному ответу) 

2 

6 Получено выражение (7) для tmax (можно без тригонометрического 

преобразования к окончательному ответу) 

2 

 Сумма 10 

 
 

 

 

Вариант 2 

Пусть x – горизонтальная ось, y – вертикальная. Запишем уравнения для точки падения 

снаряда для каждой из осей: 
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Выразим из уравнения (2) величину sin  и подставим в уравнение (1): 
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Возведем в квадрат обе части уравнения: 
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Сделав замену 
2t z , получим квадратное уравнение: 

2 2
2 0

2 2

4 4
0

L
z z

g g


   .   (4) 

Решаем его через половинный дискриминант: 
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Минимальному значению времени соответствует знак «минус»: 
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Соответствующий этому времени угол также является минимальным: 
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Навесной траектории соответствует максимальное время полета и максимальный угол: 
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Разбалловка 

 

№ Критерий Баллы 

1 Записано уравнение (1) для движения по оси x 1 

2 Записано уравнение (2) для движения по оси y 1 

3 Записано биквадратное (квадратное) уравнение (4) относительно t 2 

4 Получено решение (5) квадратного уравнения  2 

5 Записано выражение (6) для минимального времени  1 

6 Записано выражение (7) для минимального угла 1 

7 Записано выражение (8) для максимального времени  1 

8 Записано выражение (9) для максимального угла 1 

 Сумма 10 

 

 


